Generation of a panel of related human scFv antibodies with high affinities for human CEA

来自 Elsevier

阅读量:

35

摘要:

Background: A human single chain Fv (scFv) specific for human carcinoembryonic antigen (CEA) has been isolated from a 2.0 × 109 phage display library from unimmunised human donors. The dissociation constant of the scFv has been measured by surface plasmon resonance (SPR) and found to be 7.7 x 10−9 M, with an off-rate component of 6.2 × 10−3 s−1. In order to investigate directly whether increased affinity leads to improved targeting of CEA-positive tumours, this scFv has been affinity matured by both targeted mutagenesis of the CDRs of heavy and light chains, and by light chain shuffling. Study design: A partial randomisation scheme, biased towards amino acids commonly found as somatic mutations of germline antibody sequences, was used for directed diversification of VH and VL CDR3s. Diversification of the entire VL region was also introduced by light chain shuffling of the parental anti-CEA scFv. Selection of the mutagenised repertoires was carried out to enrich for antibodies with a reduced koff. Results: Sequencing the selected clones identified a number of amino acid changes in the VH CDR3, one of which gave a four-fold reduction in koff. Stringent selection of the light chain shuffled library resulted in several clones with a two to three-fold reduction in koff. It has been possible to combine the selected changes from both mutagenesis approaches by using the mutagenised heavy chain and a light chain derived by shuffling to give a human scFv with a dissociation constant for human CEA of 6.0 x 10−10 M. Conclusion: A panel of human anti-CEA scFvs has been generated with differing dissociation constants for antigen, which will allow the correlation between tumour targeting efficiency in relation to binding affinity to be assessed directly. The scFv panel will be valuable in the optimisation of human antibodies for immunotherapy.

展开

DOI:

10.1016/S1380-2933(96)00046-2

年份:

1996

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用