Mantle Partial Melting Beneath Gakkel Ridge Reflected in the Petrography of Spinel Lherzolites
摘要:
One of the main aims of the AMORE expedition to Gakkel Ridge was to investigate the nature of mantle residues of low-degree partial melting. Previous results from a single sample of highly serpentinized Gakkel peridotite were unable to conclusively resolve many of the issues of mantle melting and mantle veining involved (1). We have made a preliminary examination of 46 thin sections and hundreds of hand samples of mantle peridotites made on board PFS POLARSTERN and HEALY in the course of the expedition. Most of these peridotites are altered 60-90%, like most abyssal peridotites. Some however are stunningly fresh, containing no detectable serpentine in thin section. The distribution of mantle rock types is similar to that from other mid-ocean ridges. Dunites are present but rare, in contrast to the SW Indian Ridge oblique spreading center at 12° E, as are plagioclase peridotites, in contrast to their abundance at Molloy Ridge further south on the arctic ridge system. There are two differences between this sample set and those commonly observed on mid-ocean ridges that are of particular note. First is the relative abundance of clinopyroxene. The mean clinopyroxene content and size observed in thin section are both qualitatively greater than is commonly observed in abyssal peridotites. Second, the spinels are more nearly euhedral, more abundant and commonly very pale in color. The pale color is well known to be a sign of low Cr content (and thus high activity of Al) in the residual system. All of these observations suggest a low degree of partial melting in the Gakkel Ridge mantle, in accordance with theoretical predictions. What has not been observed to date in even the largest and freshest samples is any evidence of significant mantle veining. It may be that mantle veins have sufficiently low solidi that they melt out completely without a trace even at the lowest degrees of partial melting. The petrographic evidence however suggests that there never was significant veining. Plagioclase is present in a few of the fresh samples, forming haloes around embayed spinels, and in contact with clinopyroxene forming spectacular symplectic haloes around the spinel. This suggests that in this case, the low pressure phase transformation cpx + spinel to plagioclase + olivine is responsible for the observed textures rather than impregnation by a basaltic melt (2). 1) E. Hellebrand et al, Chemical Geology in press 2001. 2) H. Dick (1989) in: Magmatism in the Ocean Basins
展开
被引量:
年份:
2001
通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!