Wave scattering on a fractal surface

阅读量:

34

作者:

Z.W.Qian

展开

摘要:

A generalized Von Koch surface was constructed. On the basis of Freedman's formulation for wave scattering and by applications of the Lipchitz transform under Holder conditions in fractals, a demonstration was given that the Hausdorff dimension of the solid-angle discontinuity on the scattering surface is the same as the one of the surface itself, and an expression of the scattering strength of the fractal surface has been given. A comparison with the Schulkin-Shaffer empirical formula for the sound scattering from sea surface proposes that, in this situation, the generalized (continuous) Koch surface seems to degenerate into the (discrete) four-two Cantor sets, only the latter make a contribution to the backscattering.

展开

DOI:

10.1021/ed079p218

被引量:

11

年份:

2000

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用