Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure.

阅读量:

203

作者:

N LiRJ LiuJM DwyerM BanasrB LeeH SonXY LiG AghajanianRS Duman

展开

摘要:

Despite widely reported clinical and preclinical studies of rapid antidepressant actions of glutamate N-methyl-D-aspartate (NMDA) receptor antagonists, there has been very little work examining the effects of these drugs in stress models of depression that require chronic administration of antidepressants or the molecular mechanisms that could account for the rapid responses. We used a rat 21-day chronic unpredictable stress (CUS) model to test the rapid actions of NMDA receptor antagonists on depressant-like behavior, neurochemistry, and spine density and synaptic function of prefrontal cortex neurons. The results demonstrate that acute treatment with the noncompetitive NMDA channel blocker ketamine or the selective NMDA receptor 2B antagonist Ro 25-6981 rapidly ameliorates CUS-induced anhedonic and anxiogenic behaviors. We also found that CUS exposure decreases the expression levels of synaptic proteins and spine number and the frequency/amplitude of synaptic currents (excitatory postsynaptic currents) in layer V pyramidal neurons in the prefrontal cortex and that these deficits are rapidly reversed by ketamine. Blockade of the mammalian target of rapamycin protein synthesis cascade abolishes both the behavioral and biochemical effects of ketamine. The results indicate that the structural and functional deficits resulting from long-term stress exposure, which could contribute to the pathophysiology of depression, are rapidly reversed by NMDA receptor antagonists in a mammalian target of rapamycin dependent manner.

展开

DOI:

10.1016/j.biopsych.2010.12.015

被引量:

1071

年份:

2011

相似文献

参考文献

引证文献

来源期刊

引用走势

2015
被引量:193

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用