Altered wound healing in mice lacking a functional osteopontin gene (spp1).
摘要:
Osteopontin (OPN) is an arginine-glycine-aspartate (RGD)- containing glycoprotein encoded by the gene secreted phosphoprotein 1 (spp1). spp1 is expressed during embryogenesis, wound healing, and tumorigenesis; however, its in vivo functions are not well understood. Therefore, OPN null mutant mice were generated by targeted mutagenesis in embryonic stem cells. In OPN mutant mice, embryogenesis occurred normally, and mice were fertile. Since OPN shares receptors with vitronectin (VN), we tested for compensation by creating mice lacking both OPN and VN. The double mutants were also viable, suggesting that other RGD-containing ligands replace the embryonic loss of both proteins. We tested the healing of OPN mutants after skin incisions, where spp1 was upregulated as early as 6 h after wounding. Although the tensile properties of the wounds were unchanged, ultrastructural analysis showed a significantly decreased level of debridement, greater disorganization of matrix, and an alteration of collagen fibrillogenesis leading to small diameter collagen fibrils in the OPN mutant mice. These data indicate a role for OPN in tissue remodeling in vivo, and suggest physiological functions during matrix reorganization after injury.
展开
DOI:
10.1172/JCI2131
被引量:
年份:
1998

























































通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!