Statistical pattern recognition: a review

阅读量:

1129

作者:

JAIN,A. K.

展开

摘要:

The primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques and methods imported from statistical learning theory have been receiving increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes, sensing environment, pattern representation, feature extraction and selection, cluster analysis, classifier design and learning, selection of training and test samples, and performance evaluation. In spite of almost 50 years of research and development in this field, the general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved. New and emerging applications, such as data mining, web searching, retrieval of multimedia data, face recognition, and cursive handwriting recognition, require robust and efficient pattern recognition techniques. The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field.

展开

DOI:

10.1080/716099491

被引量:

9434

年份:

2002

Taylor & Francis IEEEXplore (全网免费下载) IEEEXplore Semantic Scholar (全网免费下载) dx.doi.org 查看更多 BioOne Oxford Univ Press ACM IEEE Computer Society IEEE Computer Society AACR ResearchGate ResearchGate (全网免费下载) Citeseer Citeseer (全网免费下载) EBSCO softcomp.ee.ntou.edu.tw (全网免费下载) people.sabanciuniv.edu (全网免费下载) ceng509.cankaya.edu.tr (全网免费下载) onairweb.com (全网免费下载) ai.rug.nl (全网免费下载) homes.cs.bilkent.edu.tr (全网免费下载) mendeley.com tsam-fich.wdfiles.com (全网免费下载) ece.uprm.edu (全网免费下载) web.cse.msu.edu (全网免费下载) cs.bilkent.edu.tr (全网免费下载) cs.pomona.edu (全网免费下载) cse.msu.edu (全网免费下载) cs.indiana.edu (全网免费下载) pubsonline.informs.org di.univr.it (全网免费下载) tnw.tudelft.nl (全网免费下载) springerprofessional.de ece.uprm.edu (全网免费下载) scienceopen.com vis.uky.edu (全网免费下载) informatics.indiana.edu (全网免费下载) inf.ufpr.br (全网免费下载) ivizlab.sfu.ca (全网免费下载) ce.sharif.edu (全网免费下载) yadda.icm.edu.pl SAGE cse.msu.edu (全网免费下载) cs.colorado.edu (全网免费下载) citeseer.ist.psu.edu (全网免费下载) aem.asm.org 140.98.202.196 machinelearning101.pbworks.com (全网免费下载) libvolume8.xyz (全网免费下载) cse.msu.edu aimm02.cse.ttu.edu.tw (全网免费下载) onlinecjc.ca j-biomed-inform.com ieeeexplore.info jacionline.org handwritten.net (全网免费下载) ajnr.org citeseer.uark.edu:8080 umiacs.umd.edu (全网免费下载) ams.jhu.edu (全网免费下载) cs.colorado.edu (全网免费下载) biometrics.cse.msu.edu (全网免费下载) informatics.indiana.edu (全网免费下载) celab1.ee.ntou.edu.tw (全网免费下载) machinelearning102.pbworks.com (全网免费下载) zentralblatt-math.org cipcv.ir (全网免费下载) ce.sharif.ir (全网免费下载) cghjournal.org genome.cshlp.org homepage.tudelft.nl (全网免费下载) core.ac.uk

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用