'On-the-fly' optical encoding of combinatorial peptide libraries for profiling of protease specificity.

阅读量:

39

摘要:

Large solid-phase combinatorial libraries currently play an important role in areas such as infectious disease biomarker discovery, profiling of protease specificity and anticancer drug discovery. Because compounds on solid support beads are not positionally-encoded as they are in microarrays, innovative methods of encoding are required. There are many advantages associated with optical encoding and several strategies have been described in the literature to combine fluorescence encoding methods with solid-phase library synthesis. We have previously introduced an alternative fluorescence-based encoding method ("colloidal barcoding"), which involves encoding 10–20 μm support beads during a split-and-mix synthesis with smaller 0.6–0.8 μm silica colloids that contain specific and identifiable combinations of fluorescent dye. The power of this 'on-the-fly' encoding approach lies in the efficient use of a small number of fluorescent dyes to encode millions of compounds. Described herein, for the first time, is the use of a colloid-barcoded library in a biological assay (i.e., protease profiling) combined with the use of confocal microscopy to decode the colloidal barcode. In this proof-of-concept demonstration, a small focussed peptide library was optically-encoded during a combinatorial synthesis, incubated with a protease (trypsin), analysed by flow cytometry and decodedviaconfocal microscopy. During assay development, a range of parameters were investigated and optimised, including substrate (or probe) loading, barcode stability, characteristics of the peptide-tagging fluorophore, and spacer group configuration. Through successful decoding of the colloidal barcodes, it was confirmed that specific peptide sequences presenting one or two cleavage sites were recognised by trypsin while peptide sequences not cleavable by trypsin remained intact.

展开

DOI:

10.1039/b909087h

被引量:

22

年份:

2009

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用