Screening biochars for heavy metal retention in soil: Role of oxygen functional groups

来自 Elsevier

阅读量:

504

作者:

M UchimiyaSC ChangKT Klasson

展开

摘要:

Oxygen-containing carboxyl, hydroxyl, and phenolic surface functional groups of soil organic and mineral components play central roles in binding metal ions, and biochar amendment can provide means of increasing these surface ligands in soil. In this study, positive matrix factorization (PMF) was first employed to fingerprint the principal components responsible for the stabilization of heavy metals (Cu, Ni, Cd, Pb) and the release of selected elements (Na, Ca, K, Mg, S, Al, P, Zn) and the pH change in biochar amended soils. The PMF analysis indicated that effective heavy metal stabilization occurred concurrently with the release of Na, Ca, S, K, and Mg originating from soil and biochar, resulting in as much as an order or magnitude greater equilibrium concentrations relative to the soil-only control. In weathered acidic soil, the heavy metal (especially Pb and Cu) stabilization ability of biochar directly correlated with the amount of oxygen functional groups revealed by the O/C ratio, pH pzc , total acidity, and by the 1 H NMR analysis. Equilibrium speciation calculation showed minor influence of hydrolysis on the total soluble metal concentration, further suggesting the importance of binding by surface ligands of biochar that is likely to be promoted by biochar-induced pH increase.

展开

DOI:

10.1016/j.jhazmat.2011.03.063

被引量:

475

年份:

2011

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

引用走势

2016
被引量:96

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用