Phospholipid-coated gas bubble engineering: key parameters for size and stability control, as determined by an acoustical method.

来自 ACS

阅读量:

36

作者:

S RossiG WatonMP Krafft

展开

摘要:

We have recently reported the sampling of differently sized monomodal populations of microbubbles from a polydisperse lipid-coated bubble preparation. The microbubbles were coated with dimyristoylphosphatidylcholine (DMPC) and stabilized by perfluorohexane (PFH). Such microbubbles are useful as contrast agents and, potentially, for oxygen, drug, and gene delivery and as therapeutic devices. Monomodal populations of small bubbles (approximately 1.6 microm in radius) and large bubbles (approximately 5.4 microm) have been obtained, as assessed by acoustical measurement, static light scattering, and optical microscopy. In this paper, we have determined the influence of various preparation parameters on the initial size characteristics (mean radius and radii distribution) of the microbubbles and on their stability upon time. The bubble size was determined acoustically, with a homemade acoustic setup equipped with a low-power emitter, to avoid altering the bubble stability. We have focused on the effects of the bubble flotation time during the fractionation process and on the DMPC concentration. PFH was indispensable for obtaining stable bubbles. The nature of the buffer [Isoton II vs N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES)] used as the continuous phase did not significantly impact the bubble characteristics and stability. In both buffers, the half-lives of small bubbles (approximately 1.6 microm in radius in Isoton II and approximately 2.1 microm in HEPES) were found to be longer than those of larger ones (approximately 5.4 and approximately 5.9 microm in Isoton II and HEPES, respectively). The bubble stability study revealed that in both buffers, the average radius of the population of large bubbles progressively increased with time. On the other hand, the average radius of the population of small bubbles decreased slightly in Isoton II and remained constant in HEPES. This suggests that the dissolution behavior of small and large bubbles is governed by different mechanisms.

展开

DOI:

10.1021/la9025987

被引量:

21

年份:

2010

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用