Shear stress-mediated extracellular signal-regulated kinase activation is regulated by sodium in endothelial cells. Potential role for a voltage-dependent sodium channel

阅读量:

87

作者:

O TraubT IshidaM IshidaJC TupperBC Berk

展开

摘要:

Fluid shear stress is an important regulator of endothelial cell (EC) function. To determine whether mechanosensitive ion channels participate in the EC response to shear stress, we characterized the role of ion transport in shear stress-mediated extracellular signal-regulated kinase (ERK1/2) stimulation. Replacement of all extracellular Na+ with either N-methyl-D-glucamine or choline chloride increased the ERK1/2 stimulation in response to shear stress by 1.89 +/- 0.1-fold. The Na+ effect was concentration-dependent (maximal effect, =12.5 mM) and was specific for shear stress-mediated ERK1/2 activation as epidermal growth factor-stimulated ERK1/2 activation was unaffected by removal of extracellular Na+. Shear stress-mediated ERK1/2 activation was potentiated by the voltage-gated sodium channel antagonist, tetrodotoxin (100 nM), to a magnitude similar to that achieved with extracellular Na+ withdrawal. Transfection of Chinese hamster ovary cells with a rat brain type IIa voltage-gated sodium channel completely inhibited shear stress-mediated ERK1/2 activation in these cells. Inhibition was reversed by performing the experiment in sodium-free buffer or by including tetrodotoxin in the buffer. Western blotting of bovine and human EC lysates with SP19 antibody detected a 250-kDa protein consistent with the voltage-gated sodium channel. Degenerate polymerase chain reaction of cDNA from primary human EC yielded transcripts whose sequences were identical to the sodium channel SCN4a and SCN8a alpha subunit genes. These results indicate that shear stress-mediated ERK1/2 activation is regulated by extracellular sodium and demonstrate that ion transport via Na+ channels modulates EC responses to shear stress.</p

展开

DOI:

10.1074/jbc.274.29.20144

被引量:

444

年份:

1999

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用