Recent progress on immobilization of enzymes on molecular sieves for reactions in organic solvents

作者:

AX YanXW LiYH Ye

展开

摘要:

Enzymes exhibit high selectivity and reactivity under normal conditions but are sensitive to denaturation or inactivation by pH and temperature extremes, organic solvents, and detergents. To extend the use of these biocatalysts for practical applications, the technology of immobilization of enzymes on suitable supports was developed. Recently, these immobilized biomolecules have been widely used and a variety of immobilization supports have been studied. The majority of these supports cover diverse kinds of materials such as natural or synthetic polyhydroxylic matrixes, porous inorganic carriers, and all kinds of functional polymers. Microporous molecular sieve, zeolite, has attracted extensive interest in research because of its distinctive physical properties and geochemistry. Recently, with the discovery of a new family of mesoporous molecular sieves, MCM-41, this series of materials shows great potential for various applications. Molecular sieves involve such a series of materials that can discriminate between molecules, particularly on the basis of size. As support materials, they offer interesting properties, such as high surface areas, hydrophobic or hydrophilic behavior, and electrostatic interaction, as well as mechanical and chemical resistance, making them attractive for enzyme immobilization. In this article, different types of molecular sieves used in different immobilization methods including physical adsorption on zeolite, entrapment in mesoporous and macroporous MCM series, as well as chemically covalent binding to functionalized molecular sieves are reviewed. Key factors affecting the application of this biotechnology are discussed systematically, and immobilization mechanisms combined with newly developed techniques to elucidate the interactions between matrixes and enzyme molecules are also introduced.

展开

DOI:

10.1385/ABAB:101:2:113

被引量:

119

年份:

2002

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

引用走势

2006
被引量:21

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用