Efficacy and Pharmacokinetics of Intravenous Nanocapsule Formulations of Halofantrine in Plasmodium berghei-Infected Mice

阅读量:

77

摘要:

The efficacy and pharmacokinetics of a new parenteral formulation of halofantrine were studied in mice infected with Plasmodium berghei. The formulation consisted of nanocapsules with an oily core, prepared from either poly(D,L-lactide) (PLA) homopolymer or PLA that was surface modified with grafted polyethylene glycol chains. They were compared with a previously described intravenous halofantrine preparation. No toxic effects were observed with halofantrine in form of nanocapsules after intravenous administration for doses of up to 100 mg/kg, whereas the solubilized form in polyethylene glycol-dimethylacetamide was toxic at this dose. The halofantrine-loaded nanocapsules showed activity that was similar to or better than that of the solution in the 4-day test and as a single dose in severely infected mice, with only minimal differences between the two nanocapsule formulations. Halofantrine pharmacokinetics were determined in parallel with parasite development in severely infected mice. Nanocapsules increased the area under the curve for halofantrine in plasma more than sixfold compared with the solution throughout the experimental period of 70 h. Furthermore, nanocapsules induced a significantly faster control of parasite development than the solution in the first 48 h posttreatment. While the parasitemia fell more rapidly with PLA nanocapsules, the effect was more sustained with the surface-modified ones. This is consistent with surface-modified nanocapsules remaining longer in the circulation. These results suggest that nanocapsule formulations could provide a more favorable halofantrine profile in the plasma and reduce the intravenous dose necessary and therefore the toxicity, thus suggesting the use of halofantrine by a parenteral route in severe malaria.

展开

DOI:

10.1128/AAC.48.4.1222-1228.2004

被引量:

108

年份:

2004

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

引用走势

2016
被引量:14

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用