Electronic structures of tetrahedral iron, cobalt, and nickel clusters. Partial quenching of magnetism in partially carbonylated derivatives
摘要:
Spin‐polarized calculations of tetrahedral Fe4, Ni4, and Co4 clusters have been performed by the self‐consistent field discrete variational Xα method. Partially carbonylated C 3v clusters Co4(μCO)3 and (OC)3CoCo3(μCO)3 have also been examined to explore how magnetic moments vary with cluster coordination environment. The bare tetrahedral clusters are magnetic containing 12, 6, and 2 unpaired electrons for Fe4, Co4, and Ni4, respectively. Exchange splittings also decrease (2.68, 1.60, and 0.56 eV) along this series. Analysis of density of states plots for these clusters supports the notion that 4s and 4p mixing into the metal d band yields hybrid orbitals better suited for metal–metal bonding. Electronic transitions are predicted to occur in the near IRabsorption spectra of the M4 clusters, a region yet to be studied experimentally. Calculations for C 3v Co4(μCo)3 yield six unpaired electrons with a large spin density on the unligated apical cobalt. In (OC)3CoCo3(μCO)3, where the apical cobalt is coordinately saturated, all the spin density (four unpaired electrons) is localized in the basal plane. Bridging CO groups in the basal plan are antiferromagnetically coupled to cobalt.
展开
DOI:
10.1063/1.449155
被引量:
年份:
1985
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!