Design of prestressed hollow core slabs

阅读量:

30

作者:

Pajari, M

展开

摘要:

Tutkimuksia / Valtion teknillinen tutkimuskeskus 657 A design method is proposed for hollow-core slabs with or without structural in-situ concrete topping. The failure mechanisms considered are flexural tensile failure, flexural compression failure, flexural cracking failure, anchorage failure, shear tension failure and failure at the interface of precast and in-situ concrete. Prediction of the cracking moment and deflections are also considered. A computer program, including the design method, was developed and used to simulate 348 full-scale loading tests. Comparing predicted cracking cpacities with those observed showed the flexural tensile strength of concrete to be independent of the slab thickness. At an assumed flexural tensile strength of 1.1 times the tensile strength (5 % fractile), roughly 80 % of the predicted cracking capacities were smaller than those observed. The prediction of shear capacity was very accurate for 265 mm slabs and fairly accurate for thinner slabs, but the tensile strength of concrete had to be reduced by 30 % in order to make the prediction for 400 m slabs conservative enough. No problems arose with the bending capacity, when the 0.2 % yield strength was used for the strands. In composite slabs, the observed deflections and cracking capacities agreed well with those predicted when the effective differential shrinkage was taken to be 35 % of the differential shrinkage calculated according to the CEB-FIP Model Code. A design method is proposed for hollow-core slabs with or without structural in-situ concrete topping. The failure mechanisms considered are flexural tensile failure, flexural compression failure, flexural cracking failure, anchorage failure, shear tension failure and failure at the interface of precast and in-situ concrete. Prediction of the cracking moment and deflections are also considered. A computer program, including the design method, was developed and used to simulate 348 full-scale loading tests. Comparing predicted cracking cpacities with those observed showed the flexural tensile strength of concrete to be independent of the slab thickness. At an assumed flexural tensile strength of 1.1 times the tensile strength (5 % fractile), roughly 80 % of the predicted cracking capacities were smaller than those observed. The prediction of shear capacity was very accurate for 265 mm slabs and fairly accurate for thinner slabs, but the tensile strength of concrete had to be reduced by 30 % in order to make the prediction for 400 m slabs conservative enough. No problems arose with the bending capacity, when the 0.2 % yield strength was used for the strands. In composite slabs, the observed deflections and cracking capacities agreed well with those predicted when the effective differential shrinkage was taken to be 35 % of the differential shrinkage calculated according to the CEB-FIP Model Code.

展开

被引量:

11

年份:

1989

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

引用走势

2013
被引量:4

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用