Machine learning algorithms and forced oscillation measurements applied to the automatic identification of chronic obstructive pulmonary disease
摘要:
The purpose of this study is to develop a clinical decision support system based on machine learning (ML) algorithms to help the diagnostic of chronic obstructive pulmonary disease (COPD) using forced oscillation (FO) measurements. To this end, the performances of classification algorithms based on Linear Bayes Normal Classifier, K nearest neighbor (KNN), decision trees, artificial neural networks (ANN) and support vector machines (SVM) were compared in order to the search for the best classifier. Four feature selection methods were also used in order to identify a reduced set of the most relevant parameters. The available dataset consists of 7 possible input features (FO parameters) of 150 measurements made in 50 volunteers (COPD, n=25; healthy, n=25). The performance of the classifiers and reduced data sets were evaluated by the determination of sensitivity (Se), specificity (Sp) and area under the ROC curve (AUC). Among the studied classifiers, KNN, SVM and ANN classifiers were the most adequate, reaching values that allow a very accurate clinical diagnosis (Se>87%, Sp>94%, and AUC>0.95). The use of the analysis of correlation as a ranking index of the FOT parameters, allowed us to simplify the analysis of the FOT parameters, while still maintaining a high degree of accuracy. In conclusion, the results of this study indicate that the proposed classifiers may contribute to easy the diagnostic of COPD by using forced oscillation measurements.
展开
关键词:
Clinical decision support Artificial intelligence Classification Forced oscillation technique Respiratory system Chronic obstructive pulmonary disease
DOI:
10.1016/j.cmpb.2011.09.009
被引量:
年份:
2012












































通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!