Proposal for halogen atom transfer mechanism for Ullmann O-arylation of phenols with aryl halides.

阅读量:

57

作者:

SonglinZhangZhenzhongZhuYuqiangDing

展开

摘要:

A systematic theoretical study on reaction mechanisms for copper(I)-catalyzed C-O coupling of phenols with aryl bromides is reported herein. Through evaluation of the relative concentrations of possible copper species in reaction solution and reactivity study of these copper species with aryl halides in the context of several commonly proposed mechanisms for copper(I)-catalyzed Ullmann reactions, we propose that the active copper catalyst should be a neutral (L)Cu(I)-OAr (L denotes an ancillary ligand; OAr denotes an aryloxide ligand) species in nonpolar solvent and Cu(OAr)(2)(-) anion in highly polar solvent. In the reaction solution, these two kinds of copper species should be in equilibrium, the direction of which is highly dependent on the polarity of the solvent. For both kinds of copper species, a halogen atom transfer mechanism is favored where an initial halogen atom transfer from phenyl bromide to the Cu(I) center occurs, resulting in the formation of Cu(II)(OAr)(Br) and a phenyl radical. Subsequent rapid attack of this phenyl radical to the aryloxide ligand bound to copper(II) would yield the coupling product and Cu(I)(Br) species, which can be readily converted to the active Cu(I)-OAr species in the presence of phenols and base. Other mechanisms such as oxidative addition, single electron transfer and σ-bond metathesis mechanisms all possess activation barriers which are too high, rendering them kinetically unfavorable. Electronic effects on phenol rings reveal that electron-donating substituents accelerate the coupling of (phen)Cu(I)(OAr) with aryl halides whereas electron-withdrawing substituents lead to much higher activation barriers, which is consistent with experimental findings and thus lends further support for such a halogen atom transfer mechanism. In view of the widely accepted oxidative addition/reductive elimination mechanism for analogous copper(I)-catalyzed coupling of N-nucleophiles with aryl halides, our results here highlight that the reaction mechanism of copper(I)-catalyzed Ullmann reactions is highly dependent on the nature of the nucleophile and different kinds of nucleophiles can be involved in different mechanisms.

展开

DOI:

10.1039/c2dt31500a

被引量:

26

年份:

2012

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用