Region-specific phosphorylation of rabphilin in mossy fiber nerve terminals of the hippocampus

阅读量:

32

作者:

Lonart, GyörgySüdhof, Thomas C.

展开

摘要:

In mossy fiber synapses of the CA3 region of the hippocampus, long-term potentiation (LTP) is induced presynaptically by activation of cAMP-dependent protein kinase A (PKA). Rab3A is a synaptic vesicle protein that regulates vesicle fusion and is essential for mossy fiber LTP. Rab3A probably acts via two effector proteins, rabphilin and RIM, of which rabphilin is an in vitro substrate for PKA. To test if rabphilin is phosphorylated in nerve terminals and if its PKA-dependent phosphorylation correlates with the PKA-dependent induction of LTP in mossy fiber terminals, we have studied the phosphorylation of rabphilin in synaptosomes isolated from the CA1 and CA3 regions of the hippocampus. Rabphilin was phosphorylated in both CA1 and CA3 synaptosomes. However, when we treated the CA1 and CA3 synaptosomes with forskolin (an agent that enhances PKA activity) or induced Ca2+ influx into synaptosomes with high K+, rabphilin phosphorylation was increased selectively in mossy fiber CA3 synaptosomes, but not in CA1 synaptosomes. In contrast, the phosphorylation of synapsin, studied as a control for the specificity of the region-specific phosphorylation of rabphilin, was augmented similarly by both treatments in CA1 and CA3 synaptosomes. These results reveal that the phosphorylation states of two synaptic substrates for PKA and CaM KII, rabphilin and synapsin, are regulated differentially in a region-specific manner, an unexpected finding because rabphilin and synapsin are similarly present in CA1 and CA3 synaptosomes and are colocalized on the same synaptic vesicles. The region-specific phosphorylation of rabphilin agrees well with the restricted induction of LTP by presynaptic PKA activation in mossy fiber, but not CA1, nerve terminals.

展开

DOI:

10.1523/JNEUROSCI.18-02-00634.1998

被引量:

135

年份:

1998

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用