Syntheses, properties and applications of periodic mesoporous organosilicas prepared from bridged organosilane precursors

阅读量:

131

作者:

N MizoshitaT TaniS Inagaki

展开

摘要:

Periodic mesoporous organosilicas (PMOs) prepared by surfactant-directed polycondensation of bridged organosilane precursors are promising for a variety of next-generation functional materials, because their large surface areas, well-defined nanoporous structures and the structural diversity of organosilica frameworks are advantageous for functionalization. Thiscritical reviewhighlights the unique structural features of PMOs and their expanding potential applications. Since the early reports of PMOs in 1999, various synthetic approaches, including the selection of hydrolytic reaction conditions, development of new precursor compounds, design of templates and the use of co-condensation or grafting techniques, have enabled the hierarchical structural control of PMOs from molecular- and meso-scale structures to macroscopic morphology. The introduction of functional organic units, such as highly fluorescent π-conjugates and electroactive species, into the PMO framework has opened a new path for the development of fluorescent systems, sensors, charge-transporting materials and solid-state catalysts. Moreover, a combinational materials design approach to the organosilica frameworks, pore wall surfaces and internal parts of mesopores has led to novel luminescent and photocatalytic systems. Their advanced functions have been realized by energy and electron transfer from framework organics to guest molecules or catalytic centers. PMOs, in which the precise design of hierarchical structures and construction of multi-component systems are practicable, have a significant future in a new field of functional materials (93 references).

展开

DOI:

10.1039/c0cs00010h

被引量:

312

年份:

2011

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用