Using AUC and Accuracy in Evaluating Learning Algorithms.

来自 EBSCO

阅读量:

71

作者:

Jin HuangLingCharles X.

展开

摘要:

The area under the ROC (Receiver Operating Characteristics) curve, or simply AUC, has been traditionally used in medical diagnosis since the 1970s. It has recently been proposed as an alternative single-number measure for evaluating the predictive ability of learning algorithms. However, no formal arguments were given as to why AUC should be preferred over accuracy. In this paper, we establish formal criteria for comparing two different measures for learning algorithms and we show theoretically and empirically that AUC is a better measure (defined precisely) than accuracy. We then reevaluate well-established claims in machine learning based on accuracy using AUG and obtain interesting and surprising new results. For example, it has been well-established and accepted that Naive ayes and decision trees are very similar in predictive accuracy. We show, however, that Naive Bayes is significantly better than decision trees in AUG. The conclusions drawn in this paper may make a significant impact on machine learning and data mining applications.

展开

年份:

2005

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用