Research Trends in Adaptive Online Learning: Systematic Literature Review (2011-2020)

阅读量:

28

作者:

SA OchukutRO ObokoE MiritiE Maina

展开

摘要:

With the improvement of Information and Communication Technologies (ICTs, online learning has become a viable means for teaching and learning. Nonetheless, online learning is still facing various challenges. The challenges include lack of support and loneliness experienced by learners. Adaptive online learning is one of the means that researchers are proposing to support learners and reduce the loneliness they experience in online learning. Research in adaptive online learning has been on the rise. Though there are several review studies that have attempted to provide summaries of research and development happening in this area, there is still lack of a comprehensive and up-to-date review that looks at the aspects of adaptive online learning systems in terms of the learner characteristics being modelled, domain model, adaptation model, the various techniques used to achieve the various tasks in those models and the impact the adaptive online learning has on learning. This study therefore was initiated in order to fill this gap. The study was carried out using a systematic literature review methodology. A total of 59 articles were used in the study, drawn from six databases namely Science direct, IEEE explore, ACM, Emerald, Springer and Taylor and Francis. The results indicate that: the most used learner characteristic is learning style even though the use of learning knowledge is on the rise; there is a rise in the use of machine learning algorithms in learner modelling; learning content is the most common target for adaptation; rules is the most utilized method in the adaptation model; and most adaptive online learning have not been evaluated in terms of learning. There is therefore a need for evaluation of the developed adaptive online learning and more studies that utilize more than one learner characteristic as the basis for adaptation and those that use machine learning.

展开

DOI:

10.1007/s10758-022-09615-9

年份:

2023

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用