Hydrophilic role of deep eutectic solvents for clean synthesis of biphenyls over a magnetically separable Pd-catalyzed Suzuki-Miyaura coupling reaction

来自 Elsevier

阅读量:

30

作者:

M NiakanM Masteri-FarahaniS KarimiH Shekaari

展开

摘要:

The development of an efficient and sustainable catalytic system for the preparation of biphenyls through the Suzuki-Miyaura coupling reaction is still a great challenge to green chemistry. Encouraging the prevailing challenge, in the present work, a heterogeneous Pd catalyst was synthesized through a green method and used for the production of biphenyls in deep eutectic solvents (DESs) as green reaction media. In order to prepare the catalyst, magnetite-graphene oxide nanocomposite was modified with cellulose via the click reaction and applied as support for Pd nanoparticles. Cellulose acted as both reducing and stabilizing agent for Pd nanoparticles and eliminated the requirement of a reducing agent. The prepared catalyst was characterized by different methods such as FT-IR, EDX, EDX-mapping, XPS, SEM, TEM, XRD, VSM, and ICP-OES analyses. Catalytic properties of the obtained catalyst was explored in the coupling reaction of aryl halides with aryl boronic acids in different hydrophilic and hydrophobic DESs. The presence of cellulose with hydrophilic character on the structure of catalyst offered well dispersion of the catalyst in hydrophilic DESs, which led to enhancement of its catalytic activity. Among various hydrophilic DESs, the DES composed of dimethylammonium chloride and glycerol was verified as the most effective solvent for the preparation of biphenyls. The catalyst was compatible with a variety of substrates, with which all the Suzuki coupling products were achieved in high to excellent yields. Thanks to the low solubility of catalyst and DES in organic solvents, the separated aqueous phase containing both of the catalyst and DES could be readily recovered by evaporating water and reused up to five successive runs with a stable activity. This simple and new separation strategy provided a clean and highly efficient synthetic methodology for the synthesis of various biphenyls. Moreover, hot filtration test efficiently confirmed that the catalyst is heterogeneous and completely stable under reaction conditions.

展开

DOI:

10.1016/j.molliq.2020.115078

年份:

2020

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用