Engineering an Ecosystem : Taking Cues from Nature's Paradigm to Build Tissue in the Lab and the Body

阅读量:

41

作者:

ML Knothe TateT FallsS MishraR Atit

展开

摘要:

This manuscript took a 'top down' approach to understandingsurvival of inhabitant cells in the ecosystem bone, working from higher to lower length and time scales through the hierarchical ecosystem of bone. Our working hypothesis is that nature "engineered" the skeleton using a 'bottom up' approach,where mechanical properties of cells emerge from their adaptation to their local me-chanical milieu. Cell aggregation and formation of higher order anisotropic struc-ture results in emergent architectures through cell differentiation and extracellular matrix secretion. These emergent properties, including mechanical properties andarchitecture, result in mechanical adaptation at length scales and longer time scales which are most relevant for the survival of the vertebrate organism [Knothe Tateand von Recum 2009]. We are currently using insights from this approach to har-ness nature's regeneration potential and to engineer novel mechanoactive materials[Knothe Tate et al. 2007, Knothe Tate et al. 2009].In addition to potential applications of these exciting insights, these studies may provide important clues to evolution and development of vertebrate animals.For instance, one might ask why mesenchymal stem cells condense at all? There is a putative advantage to self-assembly and cooperation, but this advantage issomewhat outweighed by the need for infrastructural complexity (e.g., circulatory systems comprised of specific differentiated cell types which in turn form conduitsand pumps to overcome limitations of mass transport via diffusion, for example; dif-fusion is untenable for multicellular organisms larger than 250 microns in diameter.A better question might be: Why do cells build skeletal tissue? Once cooperatingcells in tissues begin to deplete local sources of food in their aquatic environment,those that have evolved a means to locomote likely have an evolutionary advantage. Once the environment becomes less aquarian and more terrestrial, self-assembledorganisms with the ability to move on land might have conferred evolutionary ad-vantages as well. So did the cytoskeleton evolve several length scales, enabling theemergence of skeletal architecture for vertebrate animals? Did the evolutionary advantage of motility over noncompliant terrestrial substrates (walking on land)favor adaptations including emergence of intracellular architecture (changes in the cytoskeleton and upregulation of structural protein manufacture), inter-cellular con-densation, mineralization of tissues, and emergence of higher order architectures?How far does evolutionary Darwinism extend and how can we exploit this knowl-edge to engineer smart materials and architectures on Earth and new, exploratory environments?[Knothe Tate et al. 2008]. We are limited only by our ability to imagine. Ultimately, we aim to understand nature, mimic nature, guide nature and/or exploit nature's engineering paradigms without engineer-ing ourselves out of existence.

展开

被引量:

17

年份:

2010

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

引用走势

2013
被引量:6

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用