Asymmetric Bioreduction of 4-hydroxy-2-butanone by Carbonyl Reductases PFODH and CpSADH Delivers 1,3-butanediol Enantiomers with Excellent R- and S-enantioselectivity

来自 EBSCO

阅读量:

57

作者:

M NaeemA LiMA YounisB ShenL YeH Yu

展开

摘要:

Chiral 1,3-butandiol (1,3-BD) is a very important intermediate for the synthesis of pharmaceutically valuable compounds. In this study, biocatalysts were developed to deliver optically pure R- and S-1,3-BD enantiomers at high conversions. Based on the catalytic activity and enantioselectivity toward 4-hydroxy-2-butanone (4H2B), two carbonyl reductases, PFODH from Pichia finlandica and CpSADH from Candida parapsilosis were screened out from a library of 20 reductases. PFODH was discovered as a new biocatalyst for reducing the 4H2B to the corresponding R-product while CpSADH was used for the first time to reduce the target substrate with strict Sselectivity, and both showed high substrate/product tolerance and good catalytic activity (with conversions of 81-90%) without requirement of external cofactors. Regeneration of cofactor NADH was facilitated by the substrate-coupled system using isopropyl alcohol as a cosubstrate. The substrate spectra of PFODH and CpSADH were further investigated by expanding to various substituted aryl ketones. Almost all of the analyzed ketones were reduced asymmetrically into their corresponding chiral alcohols with excellent ee values of 97-99%. PFODH easily reduced the substrates which are substituted adjacent to the carbonyl group or those substituted on the meta-position of the phenyl ring, while CpSADH hardly reduced those with substituents adjacent to the carbonyl group. These results demonstrate the industrial potential of PFODH and CpSADH in biosynthesis of optically pure 1,3-butanediol and other valuable chiral alcohols.

展开

DOI:

10.1007/s12257-019-0111-9

年份:

2019

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用