Crucial Role of the Amino-Terminal Tyrosine Residue 42 and the Carboxyl-Terminal PEST Domain of IκBα in NF-κB Activation by an Oxidative Stress

阅读量:

82

摘要:

Activation of transcription factor NF-kappa B involves the signal-dependent degradation of basally phosphorylated inhibitors such as I kappa B alpha. In response to proinflammatory cytokines or mitogens, the transduction machinery has recently been characterized, but the activation mechanism upon oxidative stress remains unknown. In the present work, we provide several lines of evidence that NF-kappa B activation in a T lymphocytic cell line (EL4) by hydrogen peroxide (H2O2) did not involve phosphorylation of the serine residues 32 and 36 in the amino-terminal part of I kappa B alpha. Indeed, mutation of Ser32 and Ser36 blocked IL-1 beta- or PMA-induced NF-kappa B activation, but had no effect on its activation by H2O2. Although I kappa B alpha was phosphorylated upon exposure to H2O2, tyrosine residue 42 and the C-terminal PEST (proline-glutamic acid-serine-threonine) domain played an important role. Indeed, mutation of tyrosine 42 or serine/threonine residues of the PEST domain abolished NF-kappa B activation by H2O2, while it had no effect on activation by IL-1 beta or PMA-ionomycin. This H2O2-inducible phosphorylation was not dependent on I kappa B kinase activation, but could involve casein kinase II, because an inhibitor of this enzyme (5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole) blocks NF-kappa B activation. H2O2-induced I kappa B alpha phosphorylation was followed by its degradation by calpain proteases or through the proteasome. Taken together, our findings suggest that NF-kappa B activation by H2O2 involves a new mechanism that is totally distinct from those triggered by proinflammatory cytokines or mitogens.

展开

DOI:

10.4049/jimmunol.164.8.4292

被引量:

676

年份:

2000

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用