Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3), and phosphate (PO43)

阅读量:

540

作者:

Z WangH GuoF ShenG YangY ZhangY ZengL WangH XiaoS Deng

展开

摘要:

A series of biochars were prepared by pyrolyzing oak sawdust with/without LaCl3 involvement at temperature of 300–600°C, and approximate and ultimate analyses were carried out to check their basic characteristics. Meanwhile, the releases of readily soluble NH4+, NO3 and PO43 from biochars and the adsorption of NH4+, NO3 and PO43 by biochars were investigated. Results indicated that the involvement of LaCl3 in pyrolysis could advance the temperature of maximum mass loss by 10°C compared with oak sawdust (CK), and potentially promoted biochar yield. Overall, the releases of readily soluble NH4+, NO3 and PO43 from biochars were negatively related to pyrolysis temperature, and the releases were greatly weakened by La-biochars. Additionally, the adsorption to NH4+ can be promoted by the biochars produced at low temperature. On the contrary, the NO3 adsorption can be improved by increasing pyrolysis temperature. The highest PO43 adsorption was achieved by the biochars produced at 500°C. According to the results of adsorption isotherms, the maximum adsorption capacity of NH4+, NO3 and PO43 can be significantly promoted by 1.9, 11.2, and 4.5 folds using La-biochars. Based on the observations of FT-IR, SEM–EDS, and surface functional groups, the improvement of NH4+ adsorption was potentially associated with the existing acidic function groups (phenolic-OH and carboxyl CO). The increased basic functional groups on La-biochars were beneficial to improve NO3 and PO43 adsorption. Besides, PO43 adsorption was also potentially related to the formed La2O3.

展开

DOI:

10.1016/j.chemosphere.2014.07.084

被引量:

86

年份:

2015

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

引用走势

2017
被引量:25

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用