The Arabidopsis sex1 Mutant Is Defective in the R1 Protein, a General Regulator of Starch Degradation in Plants, and Not in the Chloroplast Hexose Transporter
摘要:
Starch is the major storage carbohydrate in higher plants and of considerable importance for the human diet and for numerous technical applications. In addition, starch can be accumulated transiently in chloroplasts as a temporary deposit of carbohydrates during ongoing photosynthesis. This transitory starch has to be mobilized during the subsequent dark period. Mutants defective in starch mobilization are characterized by high starch contents in leaves after prolonged periods of darkness and therefore are termed starch excess (sex) mutants. Here we describe the molecular characterization of the Arabidopsis sex1 mutant that has been proposed to be defective in the export of glucose resulting from hydrolytic starch breakdown. The mutated gene in sex1 was cloned using a map-based cloning approach. By complementation of the mutant, immunological analysis, and of starch phosphorylation, we show that sex1 is defective in the Arabidopsis homolog of the R1 protein and not in the hexose transporter. We propose that the SEX1 protein (R1) functions as an overall regulator of starch mobilization by controlling the phosphate content of starch.
展开
关键词:
bismuth compounds crystallisation dielectric hysteresis ferroelectric thin films plasma materials processing recrystallisation annealing sol-gel processing surface treatment BiLa)<sub>
DOI:
10.2307/3871327
被引量:
年份:
2001











































通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!