Principles and applications of grazing incidence X-ray and neutron scattering from ordered molecular monolayers at the air-water interface

阅读量:

130

摘要:

The advent of well collimated, high intensity synchroton X-ray sources and the consequent development of surface-specific X-ray diffraction and fluorescence techniques have recently revolutionized the study of Langmuir monolayers at the air-liquid interface. These methods allowed for the first time the determination of the in-plane and vertical structure of such monolayers with a resolution approaching the atomic level. We briefly describe these methods, including grazing incidence X-ray diffraction, specular reflectivity, Bragg rods, standing waves and surface fluorescence techniques, and review recent results obtained for Langmuir films from their use. The methods have been successfully applied for the elucidation of the structure of crystalline aggregates of amphiphilic molecules at the water surface such as alcohols, carboxylic acids and their salts, α-amino acids and phospholipids. In addition, it became possible to monitor by diffraction the growth and dissolution of the crystalline self-aggregates as well as structural changes occuring by phase transitions. Furthermore, via the surface X-ray methods, new light is shed on the structure of the underlying attached solvent or solute ionic layer. Examples are given where singly or doubly charged ions bound to the two-dimensional (2D) crystal form either an ordered or diffuse counter-ionic layer. Finally, the surface diffraction methods provide data on transfer of structural information from 2D clusters to 3D single crystals which had been succesfully accomplished by epitaxial-like crystallization both in organic and inorganic crystals.

展开

DOI:

10.1016/0370-1573(94)90046-9

被引量:

777

年份:

1994

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用