The Molecular Mechanism of the Insulin-mimetic/sensitizing Activity of the Antidiabetic Sulfonylurea Drug Amaryl

阅读量:

57

作者:

Günter Müller

展开

摘要:

The hypoglycemic sulfonylurea drugs cause reduction of blood glucose predominantly via stimulation of insulin release from pancreatic beta cells. In addition, during long-term treatment, an insulin-independent blood glucose-decreasing mechanism is assumed to operate. This may include insulin-sensitizing and insulin-mimetic activity in muscle and adipose tissue. This review summarizes our current knowledge about the putative modes of action of the sulfonylurea compound, Amaryl, in pancreatic beta cells and, in particular, peripheral target cells that form the molecular basis for its characteristic pharmacological and clinical profile. The analysis was performed in comparison with the conventional and the "golden standard" sulfonylurea, glibenclamide. I conclude: (I) The blood glucose decrease provoked by Amaryl can be explained by a combination of stimulation of insulin release from the pancreas and direct enhancement, as well as potentiation of the insulin response of glucose utilization in peripheral tissues only. (II) The underlying molecular mechanisms seemed to rely on beta cells on a sulfonylurea receptor protein, SURX, associated with the ATP-sensitive potassium channel (K(ATP)) and different from SUR1 for glibenclamide, and in muscle and adipose cells on: (a) the increased production of diacylglycerol and activation of protein kinase C; (b) the enhanced expression of glucose transporter isoforms; and (c) the insulin receptor-independent activation of the insulin receptor substrate/phosphatidylinositol-3-kinase pathway. (III) The latter mechanism involved a nonreceptor tyrosine kinase and a number of components, such as caveolin and glycosylphosphatidylinositol structures, which are assembled in caveolae/detergent-insoluble glycolipid-enriched rafts of the target cell plasma membrane. Since hyperinsulinism and permanent K(ATP) closure are supposed to negatively affect the pathogenesis and therapy of non-insulin-dependent diabetes mellitus, the demonstrated higher insulin-independent blood glucose-lowering activity of Amaryl may be therapeutically relevant.

展开

DOI:

10.1007/BF03401827

被引量:

145

年份:

2000

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

Molecular Medicine
2000/12/01

引用走势

2012
被引量:20

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用