Deformation beneath Gakkel Ridge, Arctic Ocean: From mantle flow to mantle shear in a sparsely magmatic spreading zone

阅读量:

31

摘要:

Mantle deformation processes leading to seafloor spreading are often difficult to infer due to the highly serpentinized and weathered state of most abyssal peridotites. We investigated the development of high-temperature crystal-plastic deformation and lower temperature mylonitization processes in relatively fresh (<50% modal serpentine) and ultra-fresh (<1% serpentine) mantle peridotites derived from the heterogeneous mantle in the sparsely magmatic zone of ultraslow-spreading Gakkel Ridge system by analyzing 12 peridotites from two dredge sites (<1 km apart). Microstructurally, these 12 peridotites consist of seven high-T deformed samples and five mylonites. Modally, the 12 samples include harzburgites, lherzolites, an olivine websterite, and a plagioclase-bearing lherzolite. Based on their mineral major and trace element compositions, the lherzolites, harzburgites, and olivine websterite are residual peridotites. The lherzolites containing clinopyroxenes with flat REE patterns likely underwent refertilization with a high influx of melt. The plagioclase-bearing lherzolites probably formed by subsolidus reaction after the partial melting process. Microstructural observations support that high-T crystal-plastic deformation (most likely at temperatures exceeding 1000 degrees C) was active in the peridotites of the high-T deformation group, accommodating mantle flow beneath the Gakkel Ridge. The identified melt refertilization process may have contributed to the formation of [0101-fiber olivine fabrics in these peridotites. Mylonitic microstructures, decreasing fabric strength and grain-size reduction of olivine suggest that mylonitization occurred under relatively low-temperature mantle conditions (-800 degrees C) and probably accommodated strain localization. Water did not greatly affect the peridotites during the development of the shear zones, although amphibole with "dusty" zones developed in one mylonitic peridotite after mylonitization, indicating that late-stage metasomatism occurred locally within the shear zone. This low-T mylonitization is likely to have affected mantle peridotites of this region independently of petrogenetic processes. The development of these deformation processes in Gakkel Ridge suggests a shift from flow in the uppermost mantle to shear zone formation in the rift valley walls.

展开

DOI:

10.1016/j.tecto.2021.229186

年份:

2022

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用