Microwave-assisted pyrolysis of waste lignin to prepare biochar for Cu2+ highly-efficient adsorption: Performance, kinetics and mechanism resolution

阅读量:

8

作者:

L ChenJ HuY HeH WangQ DengB MiF Wu

展开

摘要:

Alkali lignin is the major byproduct of the paper-making industry and biorefining processes. However, due to its complex structure and low reactivity, most alkali lignin is still discharged as "black liquor" or directly incinerated, resulting in significant waste of bioresources and severe environmental pollution. In this study, biochar was prepared from alkali lignin using microwave-assisted pyrolysis, and its adsorption performance and mechanism for Cu2+ were investigated. The experimental findings demonstrate that the adsorption of Cu2+ onto biochar follows the pseudo-second-order kinetic model and the Langmuir isotherm model, suggesting that the adsorption process is predominantly governed by the chemisorption mechanism. Furthermore, the qm ranged from 405.55 to 492.75 mg·g1 , which is significantly higher than many other reported biochars. The adsorption mechanism includes mineral co-precipitation, DOM (mainly humic substances) adsorption, surface complexation, as well as ion exchange. The contribution of co-precipitation and surface complexation reaches 86.6 %, indicating that this biochar poses a low environmental risk. Thus, this study shows that alkali lignin could be a valuable bioresource for mitigating the environmental impact arising from Cu2+ pollution.

展开

DOI:

10.1016/j.seppur.2024.127070

年份:

2024

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用