Optimal left ventricular lead position predicts reverse remodeling and survival after cardiac resynchronization therapy.

摘要:

OBJECTIVES: The aim of the current study was to evaluate echocardiographic parameters after 6 months of cardiac resynchronization therapy (CRT) as well as long-term outcome in patients with the left ventricular (LV) lead positioned at the site of latest activation (concordant LV lead position) as compared with that seen in patients with a discordant LV lead position. BACKGROUND: A nonoptimal LV pacing lead position may be a potential cause for nonresponse to CRT. METHODS: The site of latest mechanical activation was determined by speckle tracking radial strain analysis and related to the LV lead position on chest X-ray in 244 CRT candidates. Echocardiographic evaluation was performed after 6 months. Long-term follow-up included all-cause mortality and hospitalizations for heart failure. RESULTS: Significant LV reverse remodeling (reduction in LV end-systolic volume from 189 +/- 83 ml to 134 +/- 71 ml, p < 0.001) was noted in the group of patients with a concordant LV lead position (n = 153, 63%), whereas patients with a discordant lead position showed no significant improvements. In addition, during long-term follow-up (32 +/- 16 months), less events (combined for heart failure hospitalizations and death) were reported in patients with a concordant LV lead position. Moreover, a concordant LV lead position appeared to be an independent predictor of hospitalization-free survival after long-term CRT (hazard ratio: 0.22, p = 0.004). CONCLUSIONS: Pacing at the site of latest mechanical activation, as determined by speckle tracking radial strain analysis, resulted in superior echocardiographic response after 6 months of CRT and better prognosis during long-term follow-up.

展开

年份:

2008

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用