A comparative analysis of machine learning approach for optimizing antenna design
摘要:
With the increasing demand for smarter antenna design in advanced technology applications, well-designed antennas have been an important factor in enhancing system performance. Most traditional antenna design requires multiple iterations and extensive testing to produce a final product. Machine learning (ML) algorithms have been used as an alternative to predict the optimal design parameters, but the outcome depends highly on the ML model efficiency. With recent development in machine learning algorithms and the availability of data for antenna design, we investigated different machine learning algorithms for optimizing the output strength of three basic antennae by analyzing the signal strength of the antenna for various antenna parameters. Different regression-based ML models were used to learn the behaviors and efficiency of three different antennas and to predict the output strength (S11) for different ranges of frequencies. The experiment compared and analyzed these ML regression algorithms for three different antennas: shot antenna, patch antenna, and bowtie antenna. In addition, the paper also provides comparison of ensemble ML models for performance analysis using the best three ML algorithms from the preliminary study. This study optimizes antenna parameters and quicker and smarter antenna design procedure using ML algorithms as compared to traditional design methods.
展开
DOI:
10.1017/S1759078723001009
年份:
2024
相似文献
参考文献
引证文献
来源期刊
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!