Endoscopic Endonasal Occipitocervical Fixation with a Customized Three-Dimensional Printed Titanium Plate-Screw Construct: A Cadaveric Feasibility Study

阅读量:

5

摘要:

Objective To evaluate the feasibility of a novel method for occipitocervical fixation (OCF) through the endonasal corridor. Methods Thin-cut computed tomography scans were obtained for 5 cadaveric specimens. Image segmentation was used to reconstruct 3D models of each O-C1 joint complex. Using computer-aided design software, plates were custom-designed to span each O-C1 joint, sit flush onto the bony surface, and accommodate screws. The final models were 3D-printed in titanium. For implantation, specimens were held in pin-fixation and registered to neuronavigation. A rigid 0 endoscope was used for endonasal visualization. An inverted U-shaped nasopharyngeal flap was raised to expose the occipital condyles and C1. The plates were introduced and fixed with bone screws. Computed tomography scans were obtained to assess screw accuracy and proximity to critical neurovascular structures. Screw entry points and trajectories were recorded. Results Endonasal OCF was performed on 5 cadaveric specimens. The mean starting point for occipital condyle screws was 6.17 mm lateral and 5.38 mm rostral to the medial O-C1 joint. Mean axial and sagittal trajectories were 7.98° and 6.71°, respectively. The mean starting point for C1 screws was 16.11 mm lateral to the C1 anterior tubercle and 6.39 mm caudal to the medial O-C1 joint. Mean axial and sagittal trajectories were 10.97° and 9.91°, respectively. Conclusions Endonasal OCF is technically and anatomically feasible. The application of this technique may allow for same-stage endonasal decompression and fixation, offering a minimally invasive alternative to current methods of fixation and advancing surgeons' ability to treat pathology of the craniovertebral junction. Next steps will focus on biomechanical testing.

展开

DOI:

10.1016/j.wneu.2024.07.055

年份:

2024

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用