A new online learning algorithm for structure-adjustable extreme learning machine

阅读量:

229

作者:

M DongG LiM Liu

展开

摘要:

Inctual industrialields, dataorodellingresually generated gradually, whichequireshathe data-based predictionodelashenline learningapability.lthoughanynline learninglgorithmsaveeen proposed,he generalization performance needsoe improvedurther. Inhis paper,tructure-adjustablenline learning neural network (SAO-ELM)asednhe extreme learningachine (ELM) with quicker learningpeedndetter generalization performance is proposed.irstly, ELM ishanged intotructure-adjustable learningachine, in whichhe numberf nodes in itsingleidden layeranedjusted.hen,pecialtrategy is developedoandlehe difficultyhathe newddedidden nodes'utputsorrespondingohe discardedraining dataannotebtained.fterhat,n iterative equation is presentedopdateheutputatrix whenidden nodesredded.esultsf numericalomparisonasedn dataromheeal worldenchmark problemsndnctualontinuousasting processhowhathe performancefAO-ELMasignificantdvantagesverhatfheypicalnline learninglgorithmsn generalization performance. Inddition,AO-ELMetainsheeritf quick learningharacteristicf ELM.

展开

被引量:

37

年份:

2010

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用