New Screening Methods for Chemicals with Hormonal Activities Using Interaction of Nuclear Hormone Receptor with Coactivator
摘要:
The endocrine system exerts important functions in a multitude of physiological processes including embryogenesis, differentiation, and homeostasis. Xenobiotics may modify natural endocrine function and so affect human health and wildlife. It is necessary, therefore, to understand the degree to which xenobiotics can disrupt endocrine systems. The key targets of endocrine disruptors are nuclear hormone receptors, which bind to steroid hormones and regulate their gene transcription. We have developed relevant assay systems based on the ligand-dependent interaction between nuclear hormone receptor and coactivator. The coactivators used in this study contained CBP, p300, RIP140, SRC1, TIF1, and TIF2. By two hybrid assay in yeast, the interactions of estrogen receptor with RIP140, SRC1, TIF1, and TIF2 were detected and they were completely dependent on the presence of estrogen. Specificity of this assay was assessed by determining the effect of steroids, known estrogen receptor agonists, and phytoestrogens. The pattern of response to chemicals were consistent with estrogenic activity measured by other assay systems, indicating that this assay system is reliable for measuring estrogenic activity. In addition, we carried out in vitro binding studies: GST pull-down assay and surface plasmon resonance analysis. The estrogen receptor also bound to coactivator in response to chemicals depending on their estrogenic activity in vitro. These data demonstrate that the measurement of interaction between steroid hormone receptor and coactivator serves as a useful tool for identifying chemicals that interact with steroid receptors. Copyright 1999 Academic Press.
展开
关键词:
Animals Humans Rats Cell Nucleus Saccharomyces cerevisiae Estradiol Isoflavones Adaptor Proteins, Signal Transducing Hormones Transcription Factors
DOI:
10.1006/taap.1998.8557
被引量:
年份:
1999
通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
引用走势
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!