A pivotal role for the activation of TRPV3 channel in itch sensations induced by the natural skin sensitizer carvacrol

阅读量:

63

作者:

TT CuiGX WangNN WeiKW Wang

展开

摘要:

Itching is an intricate, common symptom of dermatologic and systemic diseases, and both TRPV3 and TRPA1 channels have been suggested to function as downstream effector targets. But the relative contributions of TRPV3 and TRPA1 to itch sensation in vivo remain unclear. To dissect the role of TRPA1 or TRPV3 in the cutaneous sensation of itching, we took the advantage of a natural compound carvacrol from oregano, and examined its effect on the induction of scratching behavior in mice. We showed that the intradermal injection of carvacrol (0.01%, 0.1% and 1%, 50 pL) induced scratching in a concentration-dependent manner. But in TRPV3-knockout mice, the scratching induced by carvacrol (1%, 50 pL) was markedly decreased by approximately 64% (from 275 scratching bouts down to 90) within 60 rain. Further analysis revealed that TRPV3-knockout caused a reduction of scratching bouts for approximately 40% in the first 20 min (the initial phase), whereas the scratching bouts were reduced by approximately 90% in the last 40 min (the sustained phase). These results were in consistence with those in our whole-cell recordings in HEKo293T cells expressing either TRPA1 or TRPV3: carvacrol exhibited similar potencies in activating either TRPA1 or TRPV3, but carvacrol-activated TRPA1 current showed a rapid desensitization, which was reduced by approximately 90% within 5 min before a complete washout, whereas carvacrol-induced TRPV3 current showed a slow desensitization that caused less than 30% of current reduction in 10 rain and left a significant residual TRPV3 current after washout. Our results demonstrate that carvacrol from plant oregano is a skin sensitizer or allergen; TRPV3 is involved in the initial phase and the sustained phase of pruritus, whereas TRPA1 likely contributes to the initial phase.

展开

DOI:

10.1038/APS.2017.152

年份:

2018

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用