Detection of green apples in hyperspectral images of apple-tree foliage using machine vision

阅读量:

60

作者:

SafrenAlchanatisOstrovskyLevi

展开

摘要:

It is important for orchard owners to be able to estimate the quantity of fruit on the trees at the various growth stages, because a tree that bears too many fruits will yield small fruits. Thus, if growers are interested in controlling the fruit size, knowing in advance that there are too many developing fruits will give them the opportunity to treat the tree. This study proposes a machine vision-based method of automating the yield estimation of apples on trees at different stages of their growth. Since one of the most difficult aspects of apple yield estimation is distinguishing between green varieties of apples or those that are green in the first stages of growth, and the green leaves that surround them, this investigation concentrates on estimating the yield of green varieties of apples. Hyperspectral imaging was used, because it is capable of giving a wealth of information both in the visible and the near-infrared (NIR) regions and thus offers the potential to provide useful results. A multistage algorithm was developed that uses several techniques, such as principle components analysis (PCA) and extraction and classification of homogenous objects (ECHO) for analyzing hyperspectral data, as well as machine vision techniques such as morphological operations, watershed, and blob analysis. The method developed was tested on images taken in a Golden Delicious apple orchard in the Golan Heights, Israel, in two sessions: one during the first stages of growth, and the second just before harvest. The overall correct detection rate was 88.1%, with an overall error rate of 14.1%.

展开

被引量:

83

年份:

2007

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

引用走势

2012
被引量:15

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用