Traction behaviours of aviation lubricating oil and the effects on the dynamic and thermal characteristics of high-speed ball bearings
摘要:
Purpose The traction behaviours of lubricating oil significantly affect the stability and lubrication regime of aviation high-speed ball bearings. Rolling elements will slide at a low traction force (TF). Therefore, traction behaviours need to be studied, and a fitting expression for traction curves to rapidly calculate the traction coefficient (TC) should be developed. Design/methodology/approach The traction behaviours of an aviation lubricating oil were studied in severe operating conditions with a self-designed two-disc testing rig. Based on the least squares method and the Levenberg–Marquardt theory, a rapid calculation expression was developed by fitting the obtained traction curves. The correction of this expression was experimentally verified by comparing the TCs under different operating conditions. This expression was also used to modify the commonly accepted quasi-dynamic model of rolling bearings. Findings An increase of the load led to an increase in the TC. In comparison, the temperature and entrainment speed showed inverse effects. The proposed expression exactly predicted the trend of the experimentally acquired traction curve. The calculation with the modified dynamic model showed that the action of the TF on a single rolling element varied and that the temperature increase of the outer raceway is higher than the inner raceway, which is caused by the TF and relative sliding speed between the elements and raceways. Originality/value The proposed fitting expression is able to simplify the TC calculation of synthetic aviation lubricating oil in practical engineering applications. This paper can provide an important reference for the traction behaviour of synthetic aviation lubricating oil under severe conditions and assist with its rapid calculation and practical application in engineering.
展开
DOI:
10.1108/ILT-01-2019-0015
年份:
2019
通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!