The Influence of Thermal Confinement and Temperature-Dependent Absorption on Resonant Infrared Ablation of Frozen Aqueous and Alcohol Targets

阅读量:

23

作者:

DM BubbSL JohnsonRF Haglund

展开

摘要:

The mechanism of matrix-assisted resonant infrared laser ablation of frozen aqueous and methanol solutions of polymer was investigated by performing plume shadowgraphy and ablation yield measurements. A picosecond, tunable free-electron laser was tuned to two wavelengths in the target matrices, one (2940 nm) that was resonant with the -OH stretch in both water and methanol, and the other (3450 nm) that is resonant with the -CH stretch in methanol. The plume images showed gross similarities, differing only in the time required for the shockwave to appear and in the velocity of the shock front. Typically, 15-25 mus after the ablation laser pulse arrives the primary material ejection commences and lasts for hundreds of mus. In all three cases, the ablation plume appears to consist entirely of vapor with no droplets or solid particles. The ablation yield is either linear or quadratic in fluence. This dependence can be understood if we consider thermal diffusion in the targets and the temperature dependence of the absorption coefficient.

展开

关键词:

140.3390 310.3840

会议时间:

28 August 2009

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用