Orlicz–Sobolev nematic elastomers

阅读量:

27

作者:

DH ABS B

展开

摘要:

We extend the existence theorems in Barchiesi et al. (2017), for models of nematic elastomers and magnetoelasticity, to a larger class in the scale of Orlicz spaces. These models consider both an elastic term where a polyconvex energy density is composed with an unknown state variable defined in the deformed configuration, and a functional corresponding to the nematic energy (or the exchange and magnetostatic energies in magnetoelasticity) where the energy density is integrated over the deformed configuration. In order to obtain the desired compactness and lower semicontinuity, we show that the regularity requirement that maps create no new surface can still be imposed when the gradients are in an Orlicz class with an integrability just above the space dimension minus one. We prove that the fine properties of orientation-preserving maps satisfying that regularity requirement (namely, being weakly 1-pseudomonotone, H-1-continuous, a.e. differentiable, and a.e. locally invertible) are still valid in the Orlicz-Sobolev setting. (C) 2019 The Author (s). Published by Elsevier Ltd.

展开

DOI:

10.1016/j.na.2019.04.012

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用