Investigations into the pharmacological action of vioprolide A on inflammatory and angiogenic processes in endothelial cells
摘要:
The vascular endothelium is a monolayer of endothelial cells that builds the inner lining of the blood vessels and constitutes a regulatory organ within the physiological system to sustain homeostasis. Endothelial cells participate in physiological processes including inflammation and angiogenesis. Dysregulation of these processes, however, can evoke or maintain pathological disorders, including cardiovascular and chronic inflammatory diseases or cancer. Although pathological inflammation and angiogenesis represent treatable conditions, current pharmacotherapeutic approaches are frequently not satisfying since their long-term application can evoke therapy resistance and thus reduced clinical efficacy. Consequently, there is an ongoing demand for the discovery of new therapeutic targets and drug leads. Considering that endothelial cells play a critical role in both angiogenesis and inflammation, the vascular endothelium represents a promising target for the treatment of diseases. Vioprolide A is a secondary metabolite isolated from the myxobacterium Cystobacter violaceus Cb. vi35. Recently, vioprolide A was identified to interact with NOP14, a nucleolar protein involved in ribosome biogenesis. Ribosome biogenesis is an indispensable cellular event that ensures adequate homeostasis. Abnormal alterations in the ribosome biogenesis, referred to as ribosomopathies, however, can lead to an overall increase in the risk of developing cancer. Accordingly, several studies have outlined the involvement of NOP14 in cancer progression and metastasis, and vioprolide A has been demonstrated to exert anti-cancer effects in vitro. However, the impact of vioprolide A and NOP14 on the endothelium has been neglected so far, although endothelial cells are crucially involved in inflammation and angiogenesis under both physiological and pathological conditions. In the present study, the effect of vioprolide A on inflammatory and angiogenic actions was analysed. In vivo, the laser-induced choroidal neovascularization (CNV) assay outlined a strong inhibitory effect of vioprolide A on both inflammation and angiogenesis. Furthermore, intravital microscopy of the cremaster muscle in mice revealed that vioprolide A strongly impaired the TNF-induced leukocyte-endothelial cell interaction in vivo. In further experiments, the specific effect of vioprolide A on activation processes of primary human umbilical vein endothelial cells (HUVECs) was examined. According to the in vivo results, vioprolide A decreased the leukocyte-endothelial cell interaction in vitro through downregulating the cell surface expression and total protein expression of ICAM-1, VCAM-1 and E-selectin. Vioprolide A evoked its anti-inflammatory actions via a dual mechanism: On the one hand, the expression of pro-inflammatory proteins, including TNFR1 and cell adhesion molecules, was lowered through a general downregulation of de novo protein synthesis. The inhibition of de novo protein synthesis is most likely linked to the interaction with and inhibition of NOP14 by vioprolide A in HUVECs. On the other hand, the natural product prevented the nuclear translocation and promotor activity of the pro-inflammatory transcription factor NF-B. Interestingly, most anti-inflammatory compounds that interfere with the NF-B signaling pathway prevent NF-B nuclear translocation through recovering or stabilizing the inhibitory IB proteins. Vioprolide A, however, decreased rather than stabilized the IB proteins and prevented NF-B nuclear translocation through interfering with its importin-dependent nuclear import. By performing siRNA-mediated knockdown experiments, we evaluated the role of NOP14 in inflammatory processes in HUVECs and could establish a causal link between the anti-inflammatory actions of vioprolide A and the deletion of NOP14. Besides exerting anti-inflammatory actions, we found that vioprolide A potently decreased the angiogenic key features proliferation, migration and sprouting of endothelial cells. Mechanistically, the natural product interfered with pro-angiogenic signaling pathw
展开
DOI:
10.21248/gups.68198
通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!