Biofunctional scaffolds with high packing density of aligned electrospun fibers support neural regeneration

阅读量:

22

作者:

V CnopsJS ChinU MilbretaSY Chew

展开

摘要:

Neurons of the central nervous system do not regenerate spontaneously after injury. As such, biofunctional tissue scaffolds have been explored to provide a growth﹑romoting environment to enhance neural regeneration. In this regard, aligned electrospun fibers have proven invaluable for regeneration by offering guidance for axons to cross the injury site. However, a high fiber density could potentially limit axonal ingrowth into the scaffold. Here, we explore which fiber density provides the optimal environment for neurons to regenerate. By changing fiber electrospinning time, we generated scaffolds with different fiber densities and implanted these in a rat model of spinal cord injury (SCI). We found that neurons were able to grow efficiently into scaffolds with high fiber density, even if the gaps between fiber bundles were very small (< 1 μm). Scaffolds with high fiber density showed good host﹊mplant integration. Cell infiltration was not affected by fiber density. Efficient blood vessel ingrowth likely requires larger gaps between fibers or faster degrading fibers. We conclude that scaffolds with high fiber densities, and thus a large number of small gaps in between fiber bundles, provide the preferred environment for nerve regeneration after SCI. This article is protected by copyright. All rights reserved.

展开

DOI:

10.1002/jbm.a.36998

年份:

2020

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用