SYMMETRY PROPERTIES OF MINIMIZERS OF A PERTURBED DIRICHLET ENERGY WITH A BOUNDARY PENALIZATION

作者:

GD FrattaA MonteilV Slastikov

展开

摘要:

We consider S-2-valued maps on a domain Omega subset of R-N minimizing a perturbation of the Dirichlet energy with vertical penalization in Omega and horizontal penalization on partial derivative Omega. We first show the global minimality of universal constant configurations in a specific range of the physical parameters using a Poincare-type inequality. Then we prove that any energy minimizer takes its values into a fixed half-meridian of the sphere S-2 and deduce uniqueness of minimizers up to the action of the appropriate symmetry group. We also prove a comparison principle for minimizers with different penalizations. Finally, we apply these results to a problem on a ball and show radial symmetry and monotonicity of minimizers. In dimension N = 2 our results can be applied to the Oseen-Frank energy for nematic liquid crystals and the micromagnetic energy in a thin-film regime.

展开

年份:

2022

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用