A statistical framework for cross-tissue transcriptome-wide association analysis

阅读量:

93

作者:

Y HuM LiQ LuH WengJ WangSM ZekavatZ YuB LiJ GuS Muchnik

展开

摘要:

Transcriptome-wide association analysis is a powerful approach to studying the genetic architecture of complex traits. A key component of this approach is to build a model to impute gene expression levels from genotypes by using samples with matched genotypes and gene expression data in a given tissue. However, it is challenging to develop robust and accurate imputation models with a limited sample size for any single tissue. Here, we first introduce a multi-task learning method to jointly impute gene expression in 44 human tissues. Compared with single-tissue methods, our approach achieved an average of 39% improvement in imputation accuracy and generated effective imputation models for an average of 120% more genes. We describe a summary-statistic-based testing framework that combines multiple single-tissue associations into a powerful metric to quantify the overall gene–trait association. We applied our method, called UTMOST (unified test for molecular signatures), to multiple genome-wide-association results and demonstrate its advantages over single-tissue strategies.

展开

DOI:

10.1038/s41588-019-0345-7

年份:

2019

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用