Zyxin contributes to coupling between cell junctions and contractile actomyosin networks during apical constriction
摘要:
One of the most common cell shape changes driving morphogenesis in diverse animals is the constriction of the apical cell surface. Apical constriction depends on contraction of an actomyosin network in the apical cell cortex, but such actomyosin networks have been shown to undergo continual, conveyor belt-like contractions before the shrinking of an apical surface begins. This finding suggests that apical constriction is not necessarily triggered by the contraction of actomyosin networks, but rather can be triggered by unidentified, temporally-regulated mechanical links between actomyosin and junctions. Here, we used C. elegans gastrulation as a model to seek genes that contribute to such dynamic linkage. We found that α-catenin and β-catenin initially failed to move centripetally with contracting cortical actomyosin networks, suggesting that linkage is regulated between intact cadherin-catenin complexes and actomyosin. We used proteomic and transcriptomic approaches to identify new players, including the candidate linkers AFD-1/afadin and ZYX-1/zyxin, as contributing to C. elegans gastrulation. We found that ZYX-1/zyxin is among a family of LIM domain proteins that have transcripts that become enriched in multiple cells just before they undergo apical constriction. We developed a semi-automated image analysis tool and used it to find that ZYX-1/zyxin contributes to cell-cell junctions' centripetal movement in concert with contracting actomyosin networks. These results identify several new genes that contribute to C. elegans gastrulation, and they identify zyxin as a key protein important for actomyosin networks to effectively pull cell-cell junctions inward during apical constriction. The transcriptional upregulation of ZYX-1/zyxin in specific cells in C. elegans points to one way that developmental patterning spatiotemporally regulates cell biological mechanisms in vivo. Because zyxin and related proteins contribute to membrane-cytoskeleton linkage in other systems, we anticipate that its roles in regulating apical constriction in this manner may be conserved. Author summary: Animals take shape during development in large part by the bending of tissues. Failures in this process are common causes of human birth defects. Such tissue bending is driven primarily by individual cells changing shape: in many examples, one side of a cell shrinks, pulling on junctions that connect the cell to neighboring cells. But the networks that drive one side of a cell to shrink are not always connected to junctions. As a result, focus has turned to understanding how connections between such networks and junctions are dynamically regulated to trigger cell shape change. We sought to identify genes that contribute to these dynamic connections. Here, we describe proteomic and transcriptomic methods that we used to identify proteins that contribute to cell shape change. We developed a new image analysis tool and used it to reveal that loss of one of these genes results in networks moving without efficiently pulling in junctions. Our results identify new molecular players, and they pinpoint a key gene whose products might contribute to dynamically connecting networks to junctions to trigger tissue shape changes in C. elegans and other organisms.
展开
DOI:
10.1371/journal.pgen.1010319
年份:
2023
相似文献
参考文献
引证文献
来源期刊
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!