Transethosomes: Cutting edge approach for drug permeation enhancement in transdermal drug delivery system

阅读量:

8

作者:

BS NayakB MohantyB MishraH RoyS Nandi

展开

摘要:

The skin is a major route of drug administration. Despite the high surface area of the skin, drug delivery via the skin route is problematic due to its physiological obstacles. The formulation scientist has developed a vesicular system to enhance the skin's absorption of bioactive substances. Among numerous vesicular systems, concept of transethosomes (TEs) introduced in 2012 are being tested for drug delivery to the dermis. When transferosomes and ethosomes interact, TEs are produced. It consists of water, ethanol, phospholipids, and an edge activator. Ethanol and the edge activator increase the absorption of medication through the skin. In the presence of ethanol and an edge activator, skin permeability can increase. The advantages of TEs include increased patient compliance, bypassing first‐pass metabolism, including non‐toxic raw components, being a noninvasive method of drug delivery, being more stable, biocompatible, biodegradable, and administered in semisolid form. TEs can be produced through the use of hot, cold, mechanical dispersion, and conventional techniques. The morphology, shape, size, zeta potential, drug loading efficiency, vesicle yield, biophysical interactions, and stability of TEs define them. Recent studies reported successful transdermal distribution of antifungal, antiviral, anti‐inflammatory, and cardiovascular bioactive while using ethosomes with significant deeper penetration in skin. The review extensively discussed various claims on TEs developed by researchers, patents, and marketed ethosomes. However, till today no patens being granted on TEs. There are still lingering difficulties related to ethanol‐based TEs that require substantial research to fix.

展开

DOI:

10.1111/cbdd.14254

年份:

2023

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用