Biocatalytic synthesis of (R)-(-)-mandelic acid from racemic mandelonitrile by cetyltrimethylammonium bromide-permeabilized cells of Alcaligenes faecalis ECU0401
摘要:
The nitrilase from Alcaligenes faecalis ECU0401 belongs to the category of arylacetonitrilase, which could hydrolyze 2-chloromandelonitrile, 3,4-dimethoxyphenylacetonitrile, mandelonitrile, and phenylacetonitrile into the corresponding arylacetic acids. To overcome the permeability barrier and prepare whole cell biocatalysts with high activities, permeabilization of Alcaligenes faecalis ECU0401 in relation to nitrilase activity was optimized by using cetyltrimethylammonium bromide (CTAB) as permeabilizing agent. The nitrilase activity from Alcaligenes faecalis ECU0401 increased 4.5-fold when the cells were permeabilized with 0.3% (w/v) CTAB for 20 min at 25A degrees C and pH 6.5. Consequently, almost all the mandelonitrile was consumed and converted to (R)-(-)-mandelic acid with greater than 99.9% enantiomeric excess (e.e.) by the CTAB-permeabilized cells. The permeability barrier has been significantly reduced in the hydrolysis of mandelonitrile by using CTAB-permeabilized cells and a dynamic resolution was successfully achieved, giving a 100% theoretical yield of (R)-(-)-mandelic acid. Efficient biocatalyst recycling was achieved as a result of cell immobilization in calcium alginate, with a product-to-biocatalyst ratio of 3.82 g (R)-(-)-mandelic acid g(-1) dry cell weight (dcw) cell after 20 cycles of repeated use.
展开
年份:
2010

通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!