Site-directed mutation to improve the enzymatic activity of 5-carboxy-2-pentenoyl-CoA reductase for enhancing adipic acid biosynthesis

阅读量:

90

作者:

J YangY LuY ZhaoZ BaiZ MaY Deng

展开

摘要:

Adipate is a linear C6 dicarboxylic acid, and is a crucial commercial material mainly used to produce the polymer nylon-6,6. In this study, the pathway producing adipate via a reverse reaction of degradation pathway of adipic acid was ported from Thermobifida fusca to Escherichia coli (E. coli). The pathway contains 6 genes: Tfu_0875, Tfu_2399, Tfu_0067, Tfu_1647, Tfu_2576 and Tfu_2577, which encodes β-ketothiolase, 3-hydroxyacyl-CoA dehydrogenase, 3-hydroxyadipyl-CoA dehydrogenase, 5-carboxy-2-pentenoyl-CoA reductase and adipyl-CoA synthetase, respectively. Of the genes in this pathway, Tfu_1647 is the limited step. Here, we constructed a homology model of 5-carboxy-2-pentenoyl-CoA reductase and found that Lys295 and Glu334 were the active sites. We carried out ten site-directed mutations of these two residues including E334D, K295R, K295Q, K295Y, K295F, E334R, E334H, E334K, E334W, and E334F. The enzymatic activity of Tfu_1647 in pTrc99A-0067-1647 of E334D, E334F, and E334R were much higher than that in the control. The Km values of E334D, E334F, and E334R were significantly reduced compared with the control. The strain with E334D had the highest adipic acid titer (0.23g/L) with 5.8% of the theoretical yield. The rational reconstruction of 5-carboxy-2-pentenoyl-CoA reductase is a potential approach in improving the enzymatic activity and titer of adipate.

展开

DOI:

10.1016/j.enzmictec.2019.02.006

年份:

2019

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用