Quantum Hall states emerging from linear magnetoresistance in a topological half-Heusler semimetal

阅读量:

17

摘要:

Topological materials often exhibit remarkably linear, non-saturating magnetoresistance (LMR), which is both of scientific and technological importance. However, the role of topologically non-trivial states in the emergence of such a behaviour has been difficult to establish in experiments. Here, we show how strong interaction between the topological surface states (TSS) with a positive g-factor and the bulk carriers can lead to a smearing of the Landau levels giving rise to an LMR behavior in a semi-metallic Heusler compound. The role of TSS is established by controllably reducing the surface-bulk coupling by a combination of substitution alloying and the application of high magnetic field, when the LMR behavior transmutes into a quantum Hall phase arising from the TSS. Our work establishes that small changes in the coupling strength between the surface and the bulk carriers can have a profound impact on the magnetotransport behavior in topological materials. In the process, we lay out a strategy to both reveal and manipulate the exotic properties of TSS in compounds with a semi-metallic bulk band structure, as is the case in multi-functional Heusler compounds.

展开

DOI:

10.48550/arXiv.2012.12633

年份:

2020

arXiv.org 钛学术 学术范 (全网免费下载) 学术范 钛学术 (全网免费下载)

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用