Nonconcave penalized inverse regression in single-index models with high dimensional predictors

作者:

LP ZhuLX Zhu

展开

摘要:

In this paper we aim to estimate the direction in general single-index models and to select important variables simultaneously when a diverging number of predictors are involved in regressions. Towards this end, we propose the nonconcave penalized inverse regression method. Specifically, the resulting estimation with the SCAD penalty enjoys an oracle property in semi-parametric models even when the dimension, p n, of predictors goes to infinity. Under regularity conditions we also achieve the asymptotic normality when the dimension of predictor vector goes to infinity at the rate of p n = o ( n 1 / 3 ) where n is sample size, which enables us to construct confidence interval/region for the estimated index. The asymptotic results are augmented by simulations, and illustrated by analysis of an air pollution dataset.

展开

DOI:

10.1016/j.jmva.2008.09.003

被引量:

99

年份:

2009

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用